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Correlations in Classical Ground States 
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We prove that ground states have, generically, a certain degree of spatial sym- 
metry. 
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1. I N T R O D U C T I O N  

It is a major unsolved problem to understand the cause of spatial sym- 
metry (specifically crystalline symmetry) in low-temperature bulk 
matter.(1 5) The essence of the problem--why energy ground states tend to 
be periodic--has been essentially solved for one-dimensional models, (6'71 
but there are what could be interpreted as "counterexamples" in two and 
three dimensions, (8-1~ i.e., simple models which have quasiperiodic, but no 
periodic, ground states. 

Periodic configurations are special in many ways. They exhibit long 
range order in that the configuration in one region determines the con- 
figuration even in very distant regions. Also, they are homogeneous in the 
sense that the configuration is essentially identical in any two congruent 
regions much larger than the period. 

We will show that energy ground states tend to have this homogeneity 
property, at least in an average sense. This seems to be the first general, 
qualitative result on the spatial symmetry of ground states for dimensions 
higher than one. 

2. N O T A T I O N  A N D  P R E L I M I N A R Y  R E S U L T S  

We consider classical lattice gas models on the n-dimensional cubic 
lattice 7/n, n ~> 1, with N~> 1 particle species and no multiple occupation of 

1 Mathematics Department, University of Texas, Austin, Texas 78712. 

707 

0022-4715/86/0500-0707505.00/0 �9 1986 Plenum Publishing Corporation 



708 Radin 

lattice sites. Microscopic states of the infinite system (henceforth called con- 
figurations) are described as follows. At each lattice site x the system can 
exist in one of N +  1 states, one of which indicates "unoccupied" and the 
remainder of which refer to the N possible species that may occupy the site. 
A configuration of the infinite system is a function f :  x e  2 ~ ~ f ( x ) ~  ~N+ 1, 
where the N +  t coordinates f j (x)  o f f ( x )  satisfy f j ( x ) =  6~.~ if the system is 
in the kth state at site x. We use the sup norm on 2 ~ c  N", so that if 
x = (xl,..., x~), Ilx[[ oo = sup{ Ixjll j = 1 ..... n}. F denotes the family of non- 
empty finite ordered subsets of 2~ ". If S e F and f is a configuration, f (S)  
represents the ordered product 0 [Ix ~ s f (x )  so that the kth component f~(S) 
o f f ( S )  equalsf(xk),  where x ~ is the kth site in S. For  any finite set D, c(D) 
denotes its cardinality. A function g : S ~ F--+ g(S)~ W from F to a metric 
space W (with metric m) will be said to have limit g ~ W as S--+ oo if, given 
e > 0 ,  there exists R > 0  such that m [ g ( S ) , ~ ] < e  for any cube 
S =  C~.b~ {y~ 7/~[ [ l y - x l l ~  ~<b} such that b>R.  In particular, a subset Y 
of ~ is said to have relative density r if the function S ~ F--+ c( Y c~ S)/c(S) 
has limit r as S ~ oo. A configuration is called quasiperiodic if, given e > 0, 
there exists a periodic configuration (that is, periodic in n directions) which 
coincides with it off a set of relative density less than < ,  

Next we need a more general version of fraction space. (8,a~ First we 
put an equivalence relation on F; S, S' E F are equivalent if S and S' + x are 
equal (as unordered sets) for some translation x ~ 77 ~. Order the (countably 
many) equivalence classes, { E j l J e N } ,  and from each Ej choose a 
representative Sj. Let K be the countable set { ( j , k ) l j ~ ,  keM(S i )  } 
where M(Sj)={g(Sj ) Ig  a configuration}. So, as k varies, ( j ,k)  runs 
through the possible states of occupation of Sj. We will need the real 
separable Banach space 7"~(K) of functions T =  { Tq[ q E K} with finite norm 
IITN~-Z(j,~)~KIT(,,~)I c(Sj) and its dual loo(K). On lo~(K) we use two 
topologies, the dual norm ] lgl l~-sup{lgql lqeK} and the weak-* 
topology, the weak topology generated by the linear functionals in TI(K). 
Between Te'[I(K ) and g~l~(K)  the duality is denoted T(g) = _ 
2(j,k)sK T(j,k) g(j,k) c(Sj). The unit ball I~(K) = {ge  l~(K)[ llgll ~ ~< 1 } is 
metrizable and compact in the weak-* topology. (m For  a metric on this 
ball we use 

m(g,g ' ) - -  ~ ]T(J,k)(g-g')l(N+l)-z~(sJ/-~ 
(j,k)6K 

where T ~j'~/is the characteristic function of the singleton {(j, k)}. Given a 
configuration f ,  a representative Sj and V~ F, we define 

(sj, v ) -  {x~ 2~"1 (Sj+ x ) ~  v ~  ;g} = ~" 



Correlations in Classical Ground States 709 

and Sv(f)  ~ l~(K) by 

Sv( f ) (J ,~-c(Sj)c(V ) ~ [f~(Si+t),km] 
tE(sj, v) 

where [g, g ' ]  denotes the usual inner product of g, g' in ~x+ 1. We think 
of Sv(f)(j,~) as the average number (out of all translations of Sj which 
intersect the "box" V) of times the occupation status k of Sj occurs in the 
configuration f A configuration f is said to be averageable if the function 
VEF---, Sv( f )~ l~(K)  has a limit [denoted oc(f)] as V-~ oo in the sense 
defined above, where l~(K) is equipped with its weak-* topology. Note 
that periodic and quasiperiodic configurations are averageable, Let 
Bo = { S ( f ) ] f  a periodic configuration}, and define (the generalized frac- 
tion space) B to be the weak-* closure of Bo in lo~(K). B will always be 
assumed to have the metric weak-* topology from I~(K) and it is thus 
compact. We will need the fact that it is also convex. 

L e m m a  1. B is convex. 

Proof. Given p and p' in B, and e > 0, choose periodic configurations 
f and f '  such that m[S( f ) ,p ]<e /4  and m[S(f ' ) ,p ']<e/4.  For each 
positive integer k we partition 2" into "even" and "odd" cubes (checker- 
board fashion) of the form {Cx,klxj = (2k + 1)nj for some integer nj} where 
such a Cx, k is called odd (respectively, even) if ~2j nj is odd (respectively, 
even). Let f k  be the periodic configuration which on every odd cube is (the 
translation of) the restriction o f f  to C0,k, and which on every even cube is 
(the translation of) the restriction of f '  to Co, ~. It follows easily that 
rn{S(f~), I S ( f ) +  S(f')]/2} has limit zero as k ~ oo. Therefore, for large 
enough k, m[S(f~),  (p + p')/2] < e, which proves the lemma. 

L e m m a  2. Given any configurations f, f '  which agree on the cube 
V= C,,b, and vector T (.j'k~ of ]](K) 

] T(J'k)[ s v ( f  ) - Sv(.f') ] l <~ min{ t(n, j)/b, c(Sj) } 

for some number t(n, j) which depends only on the dimension n and the 
diameter of Sj. 

Proof. The result follows easily by counting the fraction of trans- 
lations of Sj which intersect both V and 2n\V (the only ones on which f 
and f '  can differ) out of all translations which intersect V. The fraction is 
one of surface to volume. 

k e m m a  3. If f is an averageable configuration S ( f ) ~  B. 

Proof. This follows immediately from Lemma 2. 
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Elements of 71(K) will be called interactions since by duality with 
l~(K) they consist of translation invariant assignments of (many-body) 
energies to each finite subset of Z n. Given an interaction T, a configuration 
f i s  said to be a ground state (12) for T if for every V~ F and eve ry f '  which 
agrees with f on Y_~\V, T[Sv( f )]<~T[Sv(f ' )] .  Further, we define 
e(T)=in f{T(p) lpeB} .  A point p in B is said to be exposed by T if 
T(p) < T(p') for all p ' e B ,  p' # p .  Note that an exposed point of B is 
necessarily a convex extreme point of B. 

3. M A I N  R E S U L T S  

T h e o r e m  1. If f is a ground state for T, then 
lim v ~ oo T[Sv( f )]  = e(T). 

Proof. Assume the conclusion false. Then for some e > 0  and every 
positive integer k, there exists a cube V(k)=Cx(~),b(k) with b(k)>k 
such that IT[Sv(k)(f)]-e(T)[>5. If for infinitely many of these 
V(k) it was true that T[Sv(k)(f)] < e ( T ) - 5 ,  Lemma 2 would imply, for 
some periodic )7, that T[S()7)] < e(T) - 5/2, which would contradict the 
definition of e(T). It follows that for infinitely many k, T[Sv(kl(f)] > 
e(T)+5. But then choose a periodic configuration f '  such that 
I T[S'(f ' ) ]  - e(T)]l < 5/4. For k large enough, T[Sv(k)(f')] < e(T) + 5/2. 
Let fk  be defined to coincide with f '  in V(k) and with 
f in 2"\V(k). Then for k large enough, L e m m a 2  implies that 
I T[Sv(k)(f k) - Sv(k)(f')] I < e/4, so that 

T[ Sv(k)(fk) ] < e( T) + 35/4 < T[ Sv(k)(f) ] 

which contradicts f being a ground state for T, and proves the result. 
Theorem 1 is not too surprising since it shows that (in a strong sense) 

periodic boundary conditions do not affect energy density. That ground 
states tend to be averageable, which refers to correlations in the con- 
figurations, is less obvious since interactions with degenerate ground states 
can certainly have ground states which are not averageable--for example 
when chemical potentials (which appear as one-body interactions in our 
notation) allow coexistence of different pure phases. One might expect, 
however, that such degeneracy is a relatively rare phenomenon. To prove 
this we need to sharpen the usual notion of pure phase to correspond not 
just to extreme points (13'14'12) but to exposed points. 

Our main result follows. 

T h e o r e m  2. Assume p ~ B is exposed by the interaction T. Then 
every ground state f of T is averageable, and S ( f ) =  p. 
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ProoL Assume the conclusion false. Then there exists e > 0 such that 
for every positive integer k there exists a cube V(k) = Cx(k),b(k) with b(k) > k 
such that m[Sv(~)(f), p]  > e. By compactness, some subsequence Sv(~,)(f) 
has a limit q in B. But from Theorem 1, T[Sv(k,l(f)]--*e(T), and so 
T(q)=e(T).  Since p is exposed by T, q = p  which contradicts 
m[Sv(k)(f),  p]  > e  and proves the result. 

T h e o r e m  3. The set of interactions for which all ground states are 
averageable is generic--it  contains a dense G~ in 71(K) (in the norm 
topology). 

ProoL Assume the interaction T does not expose a point of B. Then 
there exists p~, pZ~B, and T'~7~(K) such that T(p~)= T(p2)=e(T)  and 
T ' (p2)< T'(p~). Then, with p3 representing either p~ or  p2, and sgn 
denoting the sign of e 

[ e ( T +  eT') - e( T) ]/e = (inf{ ( T +  eT')(p) -- T(p3) l p ~ B} )/e 

= sgn e inf{ [T(p - p3)/[e[ + sgn e T ' (p) ]  [p E B} 

If e > 0 the right-hand side is at least as small as the value T'(p 2) achieved 
when p = p3=  p2. If e < 0, the right-hand side is at least as large as the 
value T'(p 1) achieved when p = p3 = pl. So 

lim [ e ( T +  eT') - e(T)]/e <~ T'(p 2) and 
e+0 

T'(p 2) < T'(p ~) <~ lira [ e ( T +  eT') - e( T) ]/e 
~T0 

which implies that the function e: TeT~(K)--+ e(T) is not Gfiteaux differen- 
tiable at T. Since e is finite-valued, continuous, and concave, Mazur's 
theorem 15'16 shows that the set on which e is G~teaux-differentiable con- 
tains a dense G~, which completes the proof. 

4. CONCLUSION 

We have proven that, generically, ground state configurations are 
"averageable." To clarify this, consider an averageable configuration f For 
simplicity assume the dimension n = 1 and that there is N =  1 species of 
particle; each site x of Z is assigned the value 0 (unoccupied) or 1 
(occupied) by f Averageability implies that given any finite subset S of Z, 
say S =  {Xl, X2, X3} with Xl<X2<X3,  and any occupation values, say 
Xl "~ 0, x2 ~ 0, x3 ~ 1, there is a "frequency" p with the following property. 
Given E > 0 there is a length L such that for every finite interval I G  7/ of 
length larger than L (I centered anywhere in Z; this uniformity is crucial), 
if you translate {xl, x2, x3} about within I, the fraction of times a trans- 
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lation of {Xl, x2, x3} inherits fromfthe values {0, 0, 1 } will be within ~ of 
p. In other words, every pair of sufficiently large regions of an averageable 
configuration have nearly identical average correlations (that is, 
correlations averaged over the regions.) 

We have shown that, generically, ground states have this sort of 
statistical homogeneity. As noted in the introduction, this should be con- 
trasted with the notion of long range order, which means that (even) greatly 
separated regions are correlated. It is our hope that the above results on 
statistical homogeneity of ground states will help to prove results about 
long range order, and in particular periodicity, of ground states. 
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